

Using Performance Measures to Improve Parking Policies & Livability

UTCM Conference Performance Measures for Livable Communities

Valerie Knepper Metropolitan Transportation Commission

Sprawl development patterns lead to disinvestment in the core

- Stagnant household and employment growth
- Declining real estate values and tax revenues
- Deteriorating public infrastructure
- Higher infrastructure costs, lower revenue per acre

FOCUS Priority Development Areas

- Over 60 jurisdictions
 local application,
 regional evaluation
- Over 120 areas
- About 425,000 new housing units by 2035
- About 3% of region's land area
- About 55% of projected regional growth

SB 375 Requirements

- Reduce GHG from cars & trucks 15% per cap by 2035
- Demographic and revenue assumptions

House the region's population

- Align transportation, housing growth, and land use planning
- Adopt in early 2013

MTC's Sustainable Community Strategy Targets

- Climate Protection
- 2. Adequate Housing
- 3. Healthy and Safe Communities
- 4. Open Space and Agricultural Protection
- 5. Equitable Access
- 6. Economic Vitality
- 7. Transportation System Effectiveness
- 8. Infrastructure Security

Are parking policies important for meeting planning targets?

Excess/Free/Subsidized parking...

- Generates traffic, VMT and emissions (Targets 1 & 7)
- Makes infill more expensive, housing more expensive and limits reuse of older buildings (Targets 2 & 5)
- Tilts development toward suburban locations with cheaper land (Target 4)
- Is expensive, economically inefficient and inequitable (Targets 3, 5,6 & 7)

But – some parking is necessary for components of smart growth

- **○For BART/Rail**
- oFor TOD
- **oFor downtown infill**

Regional Parking Strategies to support smart growth

Parking policies are primarily governed by local land use policies

Multi-faceted framework to address parking issues

Policy development with local partners policies, legislation

Technical assist

- Station area plans
- Toolbox, model
- Surveys/Training
- Consulting

Analyze funding proposals for parking structures

Smart Growth Parking Tool Box & Model

mtc.ca.gov/planning/smart_growth/parking/parking_seminar.htm

Smart Growth Parking policies

Strategies by area typology

- Price and manage parking
- Unbundle and cash-out
- Support transit, walking & biking
- Reduce local requirements
- Share parking
- Carshare

Performance measures for parking structures . . . in a smart growth context

- Costs
- Ridership
- Revenues (willingness to pay)
- Alternatives
 - TDM
 - Land uses

 Other considerations – impact on GHG, mode share, equity, community concerns

Typical Parking Structure Proposal

Estimate Total Cost and Spaces e.g., \$30 million for 1,000 spaces

- Land
- Construction
- Operations and Maintenance
- Present value of funds

Calculate cost per space (~\$25,000 - \$50,000)

Calculate cost per use/day (~\$7-\$15)

Traditional Approach

- Replace all transit spaces—reserve for transit user, free/\$1
- Add additional spaces for new TOD housing at standard ITE (suburban auto dependent) rates
- •Add new parking for new TOD retail / businesses at standard ITE (suburban auto dependent) rates
- •Add extra spaces "to ensure success" of new development

Large parking structures are very expensive, and often have <85% occupancy – oversized.

Why Should MTC Analyze Parking Structures?

- Structures are expensive
- Parking on the horizon
 - TODs/Station Area Plans
 - 6000 spaces~\$150 million
 - Intermodal Stations
 - Downtowns
- TOD supports MTC regional goals – but how much parking structures vs. alternatives?

The Price of Vehicle Storage

Capital (~\$30,000/space) Land Value O & M (\$1-\$2/space/year) Full Cost

Recent Parking Structure Costs

Average Actual
Cost:
\$31,000/space
Construction only

Structures On The Horizon

Average Planned
Cost:
\$24,000/space
Construction only

Comparing Parking Structures with TDMs

Parking characteristics

- Number of spaces
- Net new spaces
- Revenues
- Occupancy/Turnover
- Cost per new space

TDM Possibilities

- Pricing charges, unbundling, cash-out
- Shared parking
- Pedestrian/bicycle
- Transit

Annualized Cost

Per New Trip on transit system

Annualized Cost

TDM Effectiveness
TDM cost per new trip
on transit system

Implement TDMs
up to cost equivalent
of parking space
expense

Resize parking structure & implement TDMs

Cost per Trip: Parking vs. TDM

Cost Per Net Space

> Occupancy and Turnover

Cost Per Trip

Compare to TDM

Parking Cost Per Trip: Examples

(Construction only)

Structure	\$/Month	\$/Workday
West Dublin/ Pleasanton	\$154	\$7.10
Vallejo Ferry Terminal	\$165	·
Vacaville	\$191	•
Fairfield	\$319	\$14.68

Case Study: Parkway Transit Center

Proposal:	
Current Spaces	207
New Spaces	710
Net Spaces	503
Construction	\$17.5 M
\$/Space	\$25,000
\$/Net Space	\$35,000
Monthly Cost/New Trip	\$269
Daily Cost/New Trip	\$12

Comparing Parking Structures with TOD Housing

Parking structure cost

- Net new spaces
- Land
- Construction, O&M
- Revenues

Housing cost

- Land
- Construction costs
- Sales/rent revenue
 - Density
 - Reduced/managed parking

Annualized Cost / Return per sq ft

Transit ridership

Our preliminary finding —
Compact housing 5+ stories tall delivers more riders
Housing provides more economic return
Structured parking costs ~\$7-15 per space
Policy issues — access, equity, GHG, design, etc

Some people choose to live close to transit

http://www.mtc.ca.gov/planning/smart_growth/tod/briefing_book.htm

Design TOD housing for **People who <u>want</u> to use transit**

- Reduced parking, unbundling
- Transit henefits
- Carshare, walk and bike amenities

Structured Parking vs Housing Preliminary Findings

- Housing 5+ stories delivers more BART riders than parking structures
- Housing highest economic return of land uses in suburban settings, provides positive financial return - more economic value than parking
- Structured parking costs ~\$5-15 per space
- Other policy issues access, equity, GHG, design, community concerns, etc
- Some parking is necessary for regional attractions, like BART, but can be minimized and shared.

Overall Conclusions

- Parking policies are an important component of smart growth policies
- Better parking policies are necessary to achieve our performance targets
- Pricing policies that show drivers the costs of their parking are essential – give consumers choices with prices
- Parking structures should be analyzed
 - Alternatives (Housing/TDMs)
 - Ridership, economics, equity, GHG
 - Right size parking, fund TDMs
- Consider regional parking policies
 - Analysis / Benchmarks / Flexible Standards?

Questions?

Valerie Knepper, MTC

http://www.mtc.ca.gov/planning/smart_growth/parking/

(510) 817-5824

vknepper@mtc.ca.gov

METROPOLITAN
TRANSPORTATION
COMMISSION